
Attention-Based Object Detection
Manar Abdelatty, Zainab Iftikhar, Titas Grusnius, Tyler Jacobson

CSCI 1470 – Deep Learning Day, Spring 2022

Introduction
Object detection algorithms are critically important for
applications as diverse as self-driving cars, face
recognition, motion tracking, and pedestrian monitoring,
and therefore it is critical to develop object detection
algorithms that are as accurate yet architecturally simple
and scalable as possible. This project attempts to
reimplement the novel object tection algorithm presented
by Carion et al. in the paper “End-to-End Object Detection
with Transformers” [1]. The model produces a set of
bounding boxes and category labels around objects
detected in images using a CNN-encoder-decoder
backbone.

Dataset
This model uses the Microsoft Common Objects in Context
(COCO) 2017 detection dataset.

● 118K Training Images
● 5K Validation Images

The ground truth labels for the object detection task are:
● Bounding box coordinates (x, y, w, h)
● Class Labels for each bounding box.

"annotations": [
 {
 "id": 0,
 "image_id": 0,
 "category_id": 2,
 "bbox": [260, 177, 231, 199],
 "segmentation": [...],
 "area": 45969,
 "iscrowd": 0
 },
 ...
]

● Each image has at least one bounding box annotation
with an average of 7 bounding boxes per image and a
maximum of 63.

● There are a total of 92 object categories in the dataset.

Figure 1: Sample data point from the COCO 2017 dataset

References
[1] Carion, Nicolas, et al. "End-to-end object detection with transformers." European
conference on computer vision. Springer, Cham, 2020.

[2] Caesar, Holger, Jasper Uijlings, and Vittorio Ferrari. "Coco-stuff: Thing and stuff
classes in context." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018.

Methodology
● The model relies on a framework called a DEtection

TRansformer (DETR). It is composed of:
1) CNN backbone to produce a set of image features.
2) Transformer encoder and decoder.
3) 3-layer prediction feed-forward network with a

ReLU activation and a linear projection layer with a
softmax activation.

● The model outputs a list of N tuples, where each tuple
contains predicted bounding box coordinates and the
corresponding class label.

● The model uses a bipartite matching function and
Hungarian loss to train the model.
○ The bipartite matching function assigns prediction to

ground truth boxes.

○ The hungarian loss is defined as a weighted linear
combination of a negative log-likelihood for class
prediction and a box loss.

Results

Figure 2: DeTR Model Architecture: A CNN backbone followed by a

transformer and a fully connected network [1]

Discussion

Figure 3:bipartite matching function [1]

● We were able to get the following parts of the codebase
up and running in tensorflow:

■ Data Pipeline

■ Forward Pass
● Includes running the input batches through the

CNN backbone, transformer block, and fully
connected layer.

■ Loss Computation
● Includes bipartite matching function &

Hungarian Loss.

● The Hungarian matcher uses non-differentiable

tensorflow operation, namely Scipy

linear_sum_assignment function which caused gradients

to be always None.

Parsing COCO
Images/Annotation Tensorflow Dataset

DeTR
Transformations/
Augmentations

Tensorflow Batches

● The model that we tried to re-implement in this project

is suitable only for inference or training with

distributed/parallel training. The DeTR framework is

relatively recent with multiple aspects of novelty which

made the pytorch-tensorflow translation quite

challenging.

