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Introduction
Object detection algorithms are critically important for 
applications as diverse as self-driving cars, face 
recognition, motion tracking, and pedestrian monitoring, 
and therefore it is critical to develop object detection 
algorithms that are as accurate yet architecturally simple 
and scalable as possible. This project attempts to 
reimplement the novel object tection algorithm presented 
by Carion et al. in the paper “End-to-End Object Detection 
with Transformers” [1]. The model produces a set of 
bounding boxes and category labels around objects 
detected in images using a CNN-encoder-decoder 
backbone. 

Dataset
This model uses the Microsoft Common Objects in Context 
(COCO) 2017 detection dataset. 

● 118K Training Images
● 5K Validation Images 

The ground truth labels for the object detection task are: 
● Bounding box coordinates (x, y, w, h)
● Class Labels for each bounding box. 

"annotations": [
       {
           "id": 0,
           "image_id": 0,
           "category_id": 2,
           "bbox": [260, 177, 231, 199],
           "segmentation": [...],
           "area": 45969,
           "iscrowd": 0
       },
       ...
   ]

● Each image has at least one bounding box annotation 
with an average of 7 bounding boxes per image and a 
maximum of 63. 

● There are a total of 92 object categories in the dataset.

Figure 1: Sample data point from the  COCO 2017 dataset
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Methodology
● The model relies on a framework called a DEtection 

TRansformer (DETR). It is composed of: 
1) CNN backbone to produce a set of image features.
2) Transformer encoder and decoder. 
3) 3-layer prediction feed-forward network with a 

ReLU activation and a linear projection layer with a 
softmax activation. 

●  The model outputs a list of N tuples, where each tuple 
contains predicted bounding box coordinates and the 
corresponding class label. 

●  The model uses a bipartite matching function and 
Hungarian loss to train the model.
○ The bipartite matching function assigns prediction to 

ground truth boxes. 

○ The hungarian loss is defined as a weighted linear 
combination of a negative log-likelihood for class 
prediction and a box loss. 

Results

Figure 2: DeTR Model Architecture: A CNN backbone followed by a 

transformer and a fully connected network [1]

Discussion

Figure 3:bipartite matching function [1]

● We were able to get the following parts of the codebase 
up and running in tensorflow: 

■ Data Pipeline

■ Forward Pass
● Includes running the input batches through the 

CNN backbone, transformer block, and fully 
connected layer.

■ Loss Computation
● Includes bipartite matching function & 

Hungarian Loss. 

● The Hungarian matcher uses non-differentiable 

tensorflow operation, namely Scipy 

linear_sum_assignment function which caused gradients 

to be always None.

Parsing COCO 
Images/Annotation Tensorflow Dataset

DeTR 
Transformations/
Augmentations

Tensorflow Batches

● The model that we tried to re-implement in this project 

is suitable only for inference or training with 

distributed/parallel training. The DeTR framework is 

relatively recent with multiple aspects of novelty which 

made the pytorch-tensorflow translation quite 

challenging. 

 


