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Bias in ‘fair’ hiring algorithms: A Fairness Analysis

Introduction
• Existing hiring algorithms claim to be "unbiased" but often 

focus on meeting basic Equal Employment Opportunity 
Commission (EEOC) requirements.

• Despite meeting standards, these algorithms may still 
exhibit discriminatory behavior with hiring managers.

• We investigate inherent biases in hiring algorithms, 
examining the efficacy of mitigating bias by removing 
gender, race, and class identifiers from the ranking 
process.

• Two forms of discrimination, disparate treatment and 
disparate impact, are assessed using the "4/5" rule1.

• Current approaches to mitigating bias in ranking 
algorithms: in-processing: 
○ in-processing (data cleaning -> ranking) without ML
○ post-processing (data cleaning -> ranking -> 

evaluation -> reranking) with ML, allowing multiple 
iterations.

Methodology
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Conclusion
• Takeaways:

○ Identifiers related to certain attributes (e.g. gender, 
race, or class) are not a good indicator of the 
presence of biases in hiring algorithms. Removing 
them do not increase the fairness of the ranking result.

• Limitations:
○ Controlled experiment
○ Training dataset was limited

• Future work:
○ Focus on the social and systemic dimensions for 

ranking algorithms for marginalized groups. 
○ Real-life evaluations to achieve better representation 

for marginalized groups.
○ Multi-modal modeling3

Model Men 
(High Risk)

Women 
(High Risk) AUC

Baseline 25% 35% 62

RPA 25% 35% 62

ROC 32% 33% 61

ACF 33% 25% 62

*For Baseline and RPA, there is no noticeable change in distribution 
between the two gender groups. However, the difference between the 
two gender groups is significantly decreased by 11% in ACF model. For 
ROC, surprisingly, women are more likely to be labeled as low risk, and 
the difference between the two groups is -8%. All four training models 
maintain the utility AUC value around 62%

• We evaluated four ranking algorithms, a specific focus on 
Themis-ml2, a fairness-aware post-processing machine 
learning algorithm.

• The four training models are evaluated using Themis-ml, 
employing a protected attribute (gender) and training data 
from the German Credit Score dataset.

• We first evaluated fairness by comparing the percentage 
of men and women classified as low-risk for a loan and 
then calculated utility effectiveness by checking if the 
AUC value remains the same
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Figure 1:  Our results showed that men (unprotected group) are 
12% more likely to be labeled as low risk.

• Models include Baseline (B), Remove Protected Attribute 
(RPA), Reject-Option Classification (ROC), and Additive 
Counterfactually Fair Model (ACF) classifiers
○ Baseline (B): classifier trained on all available input 

variables, including protected attributes.
○ Remove Protected Attribute (RPA): classifier where 

input variables do not contain protected attributes.
○ Reject-Option Classification (ROC): classifier using 

the reject-option classification method.
○ Additive Counterfactually Fair Model (ACF): classifier 

using the additive counterfactually fair method
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